ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Browns Ferry’s reactors receive subsequent license renewals
The operating licenses for the three boiling water reactors at Browns Ferry nuclear power plant, in Athens, Ala., have each been renewed by the Nuclear Regulatory Commission for an additional 20 years. The reactors, operated by the Tennessee Valley Authority, are now licensed to operate until December 2053 for Unit 1, June 2054 for Unit 2, and July 2056 for Unit 3.
Weixiong Zheng, Ryan G. McClarren, Jim E. Morel
Nuclear Science and Engineering | Volume 189 | Number 3 | March 2018 | Pages 259-271
Technical Paper | doi.org/10.1080/00295639.2017.1407592
Articles are hosted by Taylor and Francis Online.
In this work, we present a subdomain discontinuous least-squares (SDLS) scheme for neutronics problems. Least-squares (LS) methods are known to be inaccurate for problems with sharp total cross-section interfaces. In addition, the LS scheme is known not to be globally conservative in heterogeneous problems. In problems where global conservation is important, e.g., k-eigenvalue problems, a conservative treatment must be applied. In this study, we propose an SDLS method that retains global conservation and, as a result, gives high accuracy on eigenvalue problems. Such a method resembles the LS formulation in each subdomain without a material interface and differs from LS in that an additional LS interface term appears for each interface. The scalar flux is continuous in each subdomain with the continuous finite element method while discontinuous on interfaces for every pair of contiguous subdomains. The SDLS numerical results are compared with those obtained from other numerical methods with test problems having material interfaces. High accuracy of scalar flux in fixed-source problems and in eigenvalue problems is demonstrated.