ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
Mehdi S. Barough, V. D. Bharud, B. J. Patil, F. M. D. Attar, V. N. Bhoraskar, S. D. Dhole
Nuclear Science and Engineering | Volume 187 | Number 3 | September 2017 | Pages 302-311
Technical Paper | doi.org/10.1080/00295639.2017.1323505
Articles are hosted by Taylor and Francis Online.
The reaction cross sections of 55Mn(n, γ)56Mn and 65Cu(n, γ)66Cu have been measured over a neutron energy range from 1 keV to 4 MeV. The racetrack microtron accelerator-based neutron source was used for the cross-section measurement, which generates a neutron spectrum from 1 keV to 4 MeV. Moreover, the cross-sections of the nuclear reaction were calculated using TALYS-1.2 and EMPIRE nuclear codes. It has been observed that the experimental cross sections of manganese and copper are 8.5 mb and 4.5 mb, respectively, and they are quite close to the TALYS, EMPIRE, and evaluated data of ENDF/B-VII.0, ENDF/B-VII.1, JEFF-3.1.2, and EXFOR. For (n, γ) reactions studied in the present work, the results obtained using TALYS and EMPIRE codes are in agreement with literature values when the radiative capture width Гγ and the width fluctuation parameter, respectively, functioned by being adjusted to a suitable value. Further, the deviation factor for measured and theoretical cross sections has also been determined and it is found to be better for the 55Mn(n, γ)56Mn reaction obtained using TALYS compared to EMPIRE.