ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Beyond conventional boundaries: Innovative construction technologies pave the way for advanced reactor deployment
In a bid to tackle the primary obstacle in nuclear deployment—construction costs—those in industry and government are moving away from traditional methods and embracing innovative construction technologies.
Cole Gentry, G. Ivan Maldonado, Ondrej Chvala, Bojan Petrovic
Nuclear Science and Engineering | Volume 187 | Number 2 | August 2017 | Pages 166-184
Technical Paper | doi.org/10.1080/00295639.2017.1312931
Articles are hosted by Taylor and Francis Online.
This study presents a thorough parametric neutronic analysis of a plate-based tristructual isotropic (TRISO) fuel particle bearing liquid salt–cooled reactor assembly. The analyses presented investigated the effects of altering fuel enrichment, packing fraction, plate region thicknesses, assembly structure thicknesses, assembly size, numbers of plates per assembly, use of burnable poison materials, replacement of assembly and plate carbon material with silicon carbide, and use of uranium nitride fuel kernels. The effects or trends observed included reactivity behavior, discharge burnup, cycle length, and other key design parameters such as moderator temperature coefficients, coolant density coefficients, control blade worth, and impacts upon power peaking (i.e., power and flux distributions).
This study is based upon two-dimensional lattice physics calculations involving the SERPENT 2 code and by using the nonlinear reactivity model as a reasonable tool for predicting discharge burnup. The reported results show that the system’s reactivity can be significantly altered by varying these design parameters, thus providing a starting point for future design optimization studies, and it is understood that future studies will need to be expanded to equilibrium full core analysis for more complete and accurate design and safety assessments, which is also a work in progress.