ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Rebecca Pachuau, B. Lalremruata, N. Otuka, L. R. Hlondo, L. R. M. Punte, H. H. Thanga
Nuclear Science and Engineering | Volume 187 | Number 1 | July 2017 | Pages 70-80
Technical Paper | doi.org/10.1080/00295639.2017.1291053
Articles are hosted by Taylor and Francis Online.
Recently, we measured the 70Zn(n,γ)71Znm activation cross sections using the 7Li(p,n)7Be neutron source for 2.0 MeV < Ep < 3.7 MeV. Since the time-of-flight and multiple foil activation techniques cannot be applied due to the continuous beam structure and weak neutron flux at the facility, we have to rely on calculated neutron energy spectra for data reduction procedure. There are existing Monte Carlo–based codes such as Protons In Neutrons Out (PINO) and SimLiT for calculation of 7Li(p,n)7Be neutron source spectra at these energies. However, these two codes predicted different neutron spectra at these energy regions. We therefore decided to study the thick and thin target 7Li(p,n)7Be neutron spectra from the reaction threshold to the three-body breakup threshold by deterministic calculation. The predicted neutron spectra near threshold were validated by experimental neutron spectra. Our neutron spectra were compared with those predicted by PINO and SimLiT. Our neutron spectra at Ep = 2.8 and 3.5 MeV agree perfectly with those predicted by SimLiT but not with those predicted by PINO.