ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Emiliano Masiello, Richard Sanchez, Igor Zmijarevic
Nuclear Science and Engineering | Volume 161 | Number 3 | March 2009 | Pages 257-278
Technical Paper | doi.org/10.13182/NSE161-257
Articles are hosted by Taylor and Francis Online.
The method of short characteristics is extended to two-dimensional heterogeneous Cartesian cells. The new application is intended for realistic pin-by-pin lattice calculations with an exact representation of the geometric shape of the pins, without need for homogenization. The method keeps the advantages of conventional discrete ordinates methods, such as fast execution, together with the possibility to deal with a large number of spatial meshes. Expansion bases, spatial integration, and balance conservation are discussed. A Fourier analysis of the method shows that the scheme preserves the asymptotic behavior of analytical transport. Two coarse-mesh finite difference acceleration techniques have also been analyzed and generalized with the use of Eddington's factors to speed up the rate of convergence of the inner iterations. Numerical examples for realistic configurations show the precision of the method and the efficiency of the accelerated iterations. An analytical stability analysis is also presented for studying the nonconverged behavior of the accelerated scheme, and we give numerical proof of chaotic behavior and the existence of bifurcations.