ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Energy Secretary to speak at the 2025 ANS Winter Conference & Expo
In less than two weeks, the American Nuclear Society’s second annual conference of the year, the 2025 ANS Winter Conference & Expo, will come to Washington, D.C.
Today, ANS is announcing that Energy Secretary Chris Wright will be joining the list of nuclear leaders slated to speak at the conference.
Click here to register for the meeting, which will take place November 9–12 in Washington, D.C., at the Washington Hilton. Be sure to do so before November 7 to take advantage of priority pricing.
M. Andersson, D. Blanchet, H. Nylén, R. Jacqmin
Nuclear Science and Engineering | Volume 185 | Number 2 | February 2017 | Pages 263-276
Technical Paper | doi.org/10.1080/00295639.2016.1272358
Articles are hosted by Taylor and Francis Online.
In axially heterogeneous fast reactor concepts, such as the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID) CFV (French acronym of Coeur à Faible effet de Vide sodium, meaning low sodium void effect core) core, the accurate neutronic prediction of control rods is a challenge. In such cores, the performance of the classical two-dimensional (2-D) equivalence procedure, used for control rod homogenization in homogeneous fast reactors, is questionable.
In this work (part I of two companion papers), a number of axially heterogeneous environments, representative of a CFV-type core, are investigated using 2-D (X-Z) models, with the objective to distinguish regions where the classical equivalence procedure is valid from those where it is not.
It is found that the environments that affect the control rod absorber the most, and are likely to invalidate the procedure, are the internal control rod interfaces, such as the absorber/follower interface and the interface between zones of different boron enrichments. The range of the main spectral impact could be seen within 0 to 10 cm from the material interfaces studied.
In the companion paper (part II), a full-core investigation is performed that builds upon the results of this paper.