ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Vincent M. Laboure, Ryan G. McClarren, Yaqi Wang
Nuclear Science and Engineering | Volume 185 | Number 2 | February 2017 | Pages 294-306
Technical Paper | doi.org/10.1080/00295639.2016.1272374
Articles are hosted by Taylor and Francis Online.
In this paper, we derive a method for the second-order form of the transport equation that is both globally conservative and compatible with voids using the continuous finite element method. The main idea is to use the least-squares (LS) form of the transport equation in the void regions and the self-adjoint angular flux (SAAF) form elsewhere. While the SAAF formulation is globally conservative, the LS formulation needs correction in voids. The price to pay for this fix is the loss of symmetry of the bilinear form. We first derive this conservative LS (CLS) formulation in a void. Second, we combine the SAAF and CLS forms and end up with an hybrid SAAF-CLS method having the desired properties. We show that extending the theory to near-void regions is a minor complication and can be done without affecting the global conservation of the scheme. Being angular discretization-agnostic, this method can be applied to both discrete ordinates (SN) and spherical harmonics (PN) methods. However, since a globally conservative and void-compatible second-order form already exists for SN [Wang et al., Nucl. Sci. Eng., Vol. 176, p. 201 (2014)] but not for PN, we focus most of our attention on the latter angular discretization. We implement and test our method in Rattlesnake within the Multiphysics Object Oriented Simulation Environment (MOOSE) framework. The results are also compared to those of other methods.