ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NRC’s hybrid AI workshop coming up
The Nuclear Regulatory Commission will host a hybrid public workshop on September 24 from 9 a.m.-5 p.m. Eastern time to discuss its activities for the safe and secure use of artificial intelligence in NRC-regulated activities.
Jie Liu, Lihua Chi, Wang QingLin, Gong Chunye, Jiang Jie, Gan Xinbiao, Li Shengguo, Qingfeng Hu, Tom Masterson
Nuclear Science and Engineering | Volume 184 | Number 4 | December 2016 | Pages 527-536
Technical Paper | doi.org/10.13182/NSE15-53
Articles are hosted by Taylor and Francis Online.
Sweep scheduling methods used in particle transport problems belong to the class of precedence-constrained scheduling problems that are NP-complete. It is difficult to schedule local tasks for this type of transport problem and simultaneously optimize computational performance and parallel processor communication. In this paper, we present a parallel spatial-domain-decomposition algorithm to divide the tasks among the available processors. We also present a new algorithm for scheduling tasks within each processor. The scheduling algorithm has the required data and does not need to communicate with any other processor. This algorithm optimizes and assigns task priorities within the processor. Computational tasks whose results are required by another processor receive the highest priority. We combined these two algorithms to solve two-dimensional particle transport equations on unstructured grids. Our results show good performance and scalability up to 16 384 processors on the TianHe-2 supercomputer.