ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Sherly Ray, S. B. Degweker, Rashmi Rai, K. P. Singh
Nuclear Science and Engineering | Volume 184 | Number 4 | December 2016 | Pages 473-494
Technical Paper | doi.org/10.13182/NSE15-127
Articles are hosted by Taylor and Francis Online.
The BOXER3 code was developed in the Bhabha Atomic Research Centre during the 1980s as a three-dimensional code for the analysis of a pressurized heavy water reactor supercell containing fuel, moderator, and a reactivity device inserted perpendicular to the fuel channel, with options for carrying out calculations in a general two-dimensional geometry (infinite and homogeneous in one direction) and a one-dimensional plane geometry. Taking into account the computing resources available then, the code was run in few groups after obtaining condensed group cross sections for various materials from a one-dimensional multigroup calculation.
In this paper, we describe various developments carried out recently for enabling its use as an assembly-level lattice-burnup code. In addition to the collision probability method originally available, the method of characteristics for solving the multigroup transport equation has been added. This development permits the treatment of anisotropic scattering wherever necessary and available in cross-section libraries. Other developments include coupling of the code to the WIMS 69/172-group library, a method for the evaluation of the pin-dependent Dancoff factor, and the introduction of burnup. The transport equation in the collision probability method is cast in a form more suitable for iterations as well as for the method of renormalization of collision probabilities used in the work. The analysis of several benchmark problems has been carried out and the results obtained using the new code are presented.