ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Tianyu Liu, Noah Wolfe, Christopher D. Carothers, Wei Ji, X. George Xu
Nuclear Science and Engineering | Volume 185 | Number 1 | January 2017 | Pages 232-242
Technical Note | doi.org/10.13182/NSE16-33
Articles are hosted by Taylor and Francis Online.
XSBench is a proxy application used to study the performance of nuclear macroscopic cross-section data construction, which is usually the most time-consuming process in Monte Carlo neutron transport simulations. In this technical note we report on our experience in optimizing XSBench to Intel multicore central processing units (CPUs), many integrated core coprocessors (MICs), and Nvidia graphics processing units (GPUs). The continuous-energy cross-section construction in the Monte Carlo simulation of the Hoogenboom-Martin large problem is used in our benchmark. We demonstrate that through several tuning techniques, particularly data prefetch, the performance of XSBench on each platform can be desirably improved compared to the original implementation on the same platform. It is shown that the performance gain is 1.46× on the Westmere CPU, 1.51× on the Haswell CPU, 2.25× on the Knights Corner (KNC) MIC, and 5.98× on the Kepler GPU. The comparison across different platforms shows that when using the high-end Haswell CPU as the baseline, the KNC MIC is 1.63× faster while the high-end Kepler GPU is 2.20× faster.