ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Junhua Luo, Li Jiang
Nuclear Science and Engineering | Volume 184 | Number 2 | October 2016 | Pages 254-262
Technical Paper | doi.org/10.13182/NSE16-15
Articles are hosted by Taylor and Francis Online.
Cross sections for (n,2n), (n,α), (n,p), and (n,t) reactions were measured on yttrium isotopes at neutron energies ranging from 13.5 to 14.8 MeV using the activation technique in combination with high-resolution gamma-ray spectroscopy. The monoenergetic neutron beam was produced via the 3H(d,n)4He reaction using solid T-Mo. Data are reported for the following reactions: 89Y(n,2n)88(m+g)Y, 89Y(n,α)86(m+g)Rb, 89Y(n,p)89Sr, and 89Y(n,t)87mSr. The cross sections were also estimated with the TALYS-1.8 nuclear model code using different level density options, at neutron energies varying from the reaction threshold to 20 MeV. Results are also discussed and compared to corresponding values found in the literature.