ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Junhua Luo, Li Jiang
Nuclear Science and Engineering | Volume 184 | Number 2 | October 2016 | Pages 254-262
Technical Paper | doi.org/10.13182/NSE16-15
Articles are hosted by Taylor and Francis Online.
Cross sections for (n,2n), (n,α), (n,p), and (n,t) reactions were measured on yttrium isotopes at neutron energies ranging from 13.5 to 14.8 MeV using the activation technique in combination with high-resolution gamma-ray spectroscopy. The monoenergetic neutron beam was produced via the 3H(d,n)4He reaction using solid T-Mo. Data are reported for the following reactions: 89Y(n,2n)88(m+g)Y, 89Y(n,α)86(m+g)Rb, 89Y(n,p)89Sr, and 89Y(n,t)87mSr. The cross sections were also estimated with the TALYS-1.8 nuclear model code using different level density options, at neutron energies varying from the reaction threshold to 20 MeV. Results are also discussed and compared to corresponding values found in the literature.