ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
T. Matsumura
Nuclear Science and Engineering | Volume 183 | Number 3 | July 2016 | Pages 407-420
Technical Paper | doi.org/10.13182/NSE15-86
Articles are hosted by Taylor and Francis Online.
The neutron escape probability from a rectangular cell is investigated for the collision probability method. Since the numerical calculation of the escape probability requires multiple integrations, resulting in a long computing time, semianalytical approximation of the multiple integrations is proposed to reduce the computing time. By approximating the result of integration in the z-direction by a polynomial expression divided into ranges, it is possible to perform the integrations in the x- and y-directions analytically. The computing time of the present semianalytical approximation is reduced by one to two orders of magnitude compared with that required for the conventional numerical integration. Moreover, a lookup escape probability table for rectangular cells calculated using the semianalytical approximation enables the calculation of the escape probability for an arbitrary rectangle with a much shorter computing time and practical precision (<0.1% error). In addition, a method of applying the semianalytical approximation and a lookup table to the collision probability calculation for an x-y geometry is discussed.