ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Spent fuel transfer project completed at INL
Work crews at Idaho National Laboratory have transferred 40 spent nuclear fuel canisters into long-term storage vaults, the Department of Energy’s Office of Environmental Management has reported.
M. Dion, G. Marleau
Nuclear Science and Engineering | Volume 183 | Number 2 | June 2016 | Pages 261-274
Technical Paper | doi.org/10.13182/NSE15-60
Articles are hosted by Taylor and Francis Online.
The sensitivity coefficients of self-shielded cross sections to isotopic densities are computed for a subgroup resonance self-shielding model. The method we propose is based on the derivatives of the collision probabilities used in the slowing-down equation. In this work, we look at how the sensitivities vary as a function of the position inside a fuel pin or of the position of a fuel pin within an assembly. Moreover, we evaluate the importance of the superhomogenization factors, used to correct self-shielded cross sections for the subgroup method, on the cross-section sensitivities. We also present a comparison with the Monte Carlo code Serpent where the sensitivity coefficients are approximated using a finite difference method.