ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Beyond conventional boundaries: Innovative construction technologies pave the way for advanced reactor deployment
In a bid to tackle the primary obstacle in nuclear deployment—construction costs—those in industry and government are moving away from traditional methods and embracing innovative construction technologies.
M. Dion, G. Marleau
Nuclear Science and Engineering | Volume 183 | Number 2 | June 2016 | Pages 261-274
Technical Paper | doi.org/10.13182/NSE15-60
Articles are hosted by Taylor and Francis Online.
The sensitivity coefficients of self-shielded cross sections to isotopic densities are computed for a subgroup resonance self-shielding model. The method we propose is based on the derivatives of the collision probabilities used in the slowing-down equation. In this work, we look at how the sensitivities vary as a function of the position inside a fuel pin or of the position of a fuel pin within an assembly. Moreover, we evaluate the importance of the superhomogenization factors, used to correct self-shielded cross sections for the subgroup method, on the cross-section sensitivities. We also present a comparison with the Monte Carlo code Serpent where the sensitivity coefficients are approximated using a finite difference method.