ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
New York takes two more steps toward nuclear
In 2025, New York Gov. Kathy Hochul was a vocal supporter of new nuclear development in the state. In October, she called on the New York Power Authority (NYPA)—the state’s public electric utility—to add 1 GW of new nuclear.
At the tail end of December, New York made more nuclear progress on three fronts. Hochul signed an agreement with Ontario Premier Doug Ford to collaborate on new nuclear development, Ontario Power Generation (OPG) signed a memorandum of understanding with the NYPA, and New York finalized its 2025 energy plan.
F. Chaland, G. Samba
Nuclear Science and Engineering | Volume 182 | Number 4 | April 2016 | Pages 417-434
Technical Paper | doi.org/10.13182/NSE15-38
Articles are hosted by Taylor and Francis Online.
To calculate instability flows where radiative transport plays a role, it is mandatory to have one-dimensional (1-D) spherical symmetry. To obtain this 1-D symmetry, a new approach for solving the transport equation in the context of the discrete ordinates method is proposed in two-dimensional cylindrical geometry. Based on a new formulation of the spatial transport term, this method allows us to derive a scheme preserving the 1-D symmetry on an equal-angle zoning mesh. We prove this property at both discrete angle and spatial levels. Numerical results show that the scheme based on our method preserves constant solutions and the 1-D symmetry, and it is consistent of order 1.