ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
U. B. Phathanapirom, E. A. Schneider
Nuclear Science and Engineering | Volume 182 | Number 4 | April 2016 | Pages 502-522
Technical Paper | doi.org/10.13182/NSE15-25
Articles are hosted by Taylor and Francis Online.
This paper introduces a new methodology for explicitly incorporating uncertainties in key parameters into decision making regarding the transition between various nuclear fuel cycles. These key uncertainties—in demand growth rates, technology availability, and technology costs, among others—are unlikely to be resolved for several decades and invalidate the concept of planning for a unique optimal transition strategy. Past time-dependent analyses of the nuclear fuel cycle have confronted uncertainties by using a scenario-based approach where key variables are parametrically varied, which gives rise to inflexible courses of action associated with optima for each scenario. Instead, this work selects hedging strategies through a decision making under uncertainty framework. These strategies are found by applying a choice criterion to select courses of action that mitigate regrets. These regrets are calculated by evaluating the performance of all possible transition strategies for every feasible outcome of the uncertain parameter(s). The methodology is applied to a case study involving transition from the current once-through light water reactor fuel cycle to one relying on continuous recycle in fast reactors, and the effect of choice criterion is explored. Hedging strategies are found that preserve significant flexibility to allow alteration of the fuel cycle strategy once these uncertainties are resolved. This work may provide guidance for agent-based, behavioral modeling in fuel cycle simulators as well as decision making in real-world applications.