ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
Blair P. Bromley, Geoffrey W. R. Edwards, Pranavan Sambavalingam
Nuclear Science and Engineering | Volume 182 | Number 3 | March 2016 | Pages 263-286
Technical Paper | doi.org/10.13182/NSE15-19
Articles are hosted by Taylor and Francis Online.
Lattice and core physics modeling and calculations have been performed to quantify the impact of power/flux levels and power history on the reactivity and achievable burnup for 35-element fuel bundles made with thorium-based fuels, such as (Pu,Th)O2 and (233U,Th)O2. These bundles are designed to produce on the order of 20 MWd/kg burnup in homogeneous cores in a 700-MW(electric)–class pressure-tube heavy water reactor, operating on a once-through thorium cycle. Methods have been developed to model time-dependent power histories in lattice physics calculations that are more consistent with core physics analysis results. Results demonstrate that the impact of power/flux level and the modeling of time-dependent power histories on the core power distributions and achievable fuel burnup are modest for Pu/Th fuels but are more significant for 233U/Th fuels. Thus, to reduce the neutron capture rate in 233Pa and to increase fuel burnup and fissile utilization, there may be an incentive to develop solutions to reduce the time-average specific power in the fuel.