ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
A. P. J. Hodgson, R. W. Grimes, M. J. D. Rushton, O. J. Marsden
Nuclear Science and Engineering | Volume 181 | Number 3 | November 2015 | Pages 302-309
Technical Paper | doi.org/10.13182/NSE14-156
Articles are hosted by Taylor and Francis Online.
Computational models provide a framework through which to predict impurity in-growth in reactor generated radiological sources. However, the energy group structure and methodology used in these codes can have a significant impact on the accuracy of neutron cross sections and, as a result, on the inventory values calculated. The European Activation SYstem II (EASY-II) partitions neutron data in a number of different standard structures and then uses these to generate energy collapsed cross sections for each neutron reaction of interest. How well these single values represent the true neutron environment of the reactor is key to the codes efficacy for evaluating source impurities for use in material attribution. By comparing EASY-II nuclide inventories for cobalt source materials against analytically derived equivalents, these approximations have been shown to have limited impact. However, of the fission applicable standard structures investigated, only XMAS and CCFE were capable of precisely accounting for the differences in the energies required to simulate all the neutron reactions of potential interest to forensic investigations.