American Nuclear Society
Home

Home / Publications / Journals / Nuclear Science and Engineering / Volume 181 / Number 2

Cobalt Radioactivity Behaviors in a BWR Environment and Countermeasures for Dose Rate Reduction

Motomasa Fuse, Makoto Nagase, Naoshi Usui, Yoshiteru Sato, Motohiro Aizawa, Tsuyoshi Ito, Hideyuki Hosokawa, Yoichi Wada, Kazushige Ishida

Nuclear Science and Engineering / Volume 181 / Number 2 / October 2015 / Pages 175-190

Technical Paper / dx.doi.org/10.13182/NSE14-101

First Online Publication:July 31, 2015
Updated:September 30, 2015

While under normal water chemistry without any specific metal ions in reactor coolant a high electrochemical corrosion potential caused by highly oxidizing species such as hydrogen peroxide promotes the formation of hematite film on piping surfaces with a densely packed film structure, the presence of a certain amount of nickel ions prevents the magnetite film from changing to hematite by forming a nickel ferrite. This formation of nickel ferrite instead of hematite accelerates cobalt buildup, and this is especially notable for carbon steel. The observed reduction of radioactivity concentration in reactor water by zinc injection or by nickel/iron ratio control can be explained by the role of zinc or nickel in preventing the film on the fuel rod surfaces from changing to hematite, thereby stabilizing the cobalt activity on this surface. A thermodynamic evaluation suggests that zinc ferrite is more stable than cobalt ferrite only when the ratio of cobalt to zinc divalent ions, [Co2+]/[Zn2+], is <0.011 in molar units. This ratio is consistent with the ratio of 60Co activity to zinc concentration commonly used in industry to control reactor water zinc levels for a dose rate reduction under the hydrogen water chemistry condition. Based on the present understanding of radioactivity behaviors, the actual radiation dose reduction methods are classified into the several groups and summarized from the viewpoint of the interaction between the oxide and various metal ions.

 
Questions or comments about the site? Contact the ANS Webmaster.
advertisement