ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
BWRX-300 SMR passes U.K. regulatory milestone
GE Vernova Hitachi Nuclear Energy’s BWRX-300 small modular reactor has completed the second step of the generic design assessment (GDA) process in the United Kingdom. In this step, the U.K. Office for Nuclear Regulation, the Environment Agency, and Natural Resources Wales did not identify “any fundamental safety, security safeguard or environmental protection shortfalls with the design of the BWRX-300.” Step 1 was completed in December 2024.
Liu Xiaobo, Peng Xianjue, Lei Jiarong, Fan Xiaoqiang, Du Jinfeng, Gao Hui
Nuclear Science and Engineering | Volume 181 | Number 1 | September 2015 | Pages 96-104
Technical Paper | doi.org/10.13182/NSE14-100
Articles are hosted by Taylor and Francis Online.
Based on a new experimental method implemented for validating neutron initiation probability, a set of burst initiation probability experiments (128 bursts) that were initiated by simultaneously injecting pulsed neutrons just as the reactor achieves the prompt supercritical state of 0.042 $ has been carried out at the CFBR-II (Chinese Fast Burst Reactor–II). The experimental configuration and procedures remained the same throughout the entire set of experiments. Based on the measured data, each burst was tallied by judging whether or not the burst was initiated by the pulsed neutrons. With the injection of pulsed neutrons (the equivalent strength of the neutrons is 1230), the tallies of the burst initiated by pulsed neutrons were 44, and hence, the experimental result of initiation probability is 0.344, which is 27% more than the theoretical calculation result of 0.271. Some factors that influence the experimental results are discussed. The discrepancy is attributed mainly to neutrons that are scattered and returned from the environment during the injection of pulsed neutrons and the statistical deviation.