ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Cory D. Ahrens
Nuclear Science and Engineering | Volume 180 | Number 3 | July 2015 | Pages 273-285
Technical Paper | doi.org/10.13182/NSE14-76
Articles are hosted by Taylor and Francis Online.
The classical Sn equations of Carlson and Lee have been a mainstay in multidimensional radiation transport calculations. In this paper, an alternative to the Sn equations, the “Lagrange Discrete Ordinates” (LDO) equations, are derived. These equations are based on an interpolatory framework for functions on the unit sphere in three dimensions. While the LDO equations retain the formal structure of the classical Sn equations, they have a number of important differences. The LDO equations naturally allow the angular flux to be evaluated in directions other than those found in the quadrature set. To calculate the scattering source in the LDO equations, no spherical harmonic moments are needed—only values of the angular flux. Moreover, the LDO scattering source preserves the eigenstructure of the continuous scattering operator. The formal similarity of the LDO equations with the Sn equations should allow easy modification of mature three-dimensional Sn codes such as PARTISN or PENTRAN to solve the LDO equations. Numerical results are shown that demonstrate the spectral convergence (in angle) of the LDO equations for smooth solutions and the ability to mitigate ray effects by increasing the angular resolution of the LDO equations.