ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Yosuke Hirata, Takatoshi Asada, Hideo Komita, Tetsu Suzuki, Rie Aizawa
Nuclear Science and Engineering | Volume 179 | Number 4 | April 2015 | Pages 355-363
Technical Paper | doi.org/10.13182/NSE13-82
Articles are hosted by Taylor and Francis Online.
It has been reported that operating an annular flow channel electromagnetic pump (EMP) near the peak of the head pressure and flow rate curve sometimes suffers a drop of head pressure. This phenomenon was attributed to nonuniform distribution of inlet flow or magnetic field, but its mechanism has not been clarified. For fear of this undesired head pressure drop, current EMP design is sometimes too conservative in that the rated efficiency is set low compared with experimentally achieved values. Understanding this phenomenon clearly, therefore, will prospectively make possible more proper design. We modeled the annular channel with parallel divided channels to examine the response of the EMP for distributed inlet flow. For each of the divided channels, the equation of fluid motion is numerically solved including the pressure from the external flow loop. Since the time constant of the pressure from the external loop is slow compared with that of the divided channels, decreased flow in some divided channels can undergo reversed pressure and become unstable in certain cases. Transient behaviors, such as the total head pressure and the flow rate of the EMP, were examined, and conditions of this pressure drop occurrence were clarified, making possible more proper EMP design.