ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Kenji Yokoyama, Makoto Ishikawa
Nuclear Science and Engineering | Volume 178 | Number 3 | November 2014 | Pages 350-362
Technical Paper | doi.org/10.13182/NSE14-11
Articles are hosted by Taylor and Francis Online.
To provide a reactor physics benchmark for burnup reactivity coefficients, experimental data, showing the relationship between excess reactivity and accumulated thermal power acquired during the experimental fast reactor JOYO MK-I duty power operation in the late 1970s, have been evaluated and analyzed. To improve the prediction accuracy of nuclear characteristics through the use of integral experimental data, nominal values and uncertainties, including correlations of the experimental data, were evaluated. All possible uncertainty factors were evaluated and quantified by utilizing knowledge obtained after the MK-I duty power operation and calculation results based on the latest reactor physics analysis methods. Meanwhile, the present evaluated data have been reviewed and approved by the International Reactor Physics Experiment Evaluation Project, with the expectation that these data will be widely used. In the present paper, the evaluation of nominal values and uncertainties is described with a focus on the measurement technique uncertainty, which is a dominant uncertainty factor of the burnup reactivity coefficient. In addition, new analysis results of the benchmark problem are shown by the use of the latest Japanese evaluated nuclear data JENDL-4.0.