ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Adam Davis, Donald J. Dudziak, Drew E. Kornreich
Nuclear Science and Engineering | Volume 178 | Number 1 | September 2014 | Pages 42-56
Technical Paper | doi.org/10.13182/NSE13-10
Articles are hosted by Taylor and Francis Online.
Photon buildup factors provide a convenient method for radiation protection professionals to calculate dose and exposure behind various shielding configurations. Examination of buildup factors can also provide insight into the behavior of photons in these shields. Recent work has developed dual-layer buildup factors for several shielding configurations and a limited number of energies while slant-path buildup factors have been developed for single-layer shields. This work develops slant-path buildup factors for slab-geometric, dual-layer shields comprising polyethylene and lead at 25 energies conforming to the energies used in the buildup factor standard ANSI/ANS-6.4.3-1991 (W2001), “Gamma-Ray Attenuation Coefficients and Buildup Factors for Engineering Materials,” between 10 keV and 10 MeV. Further, the increased energy resolution of the calculations performed in this work allows the energy at which the previously identified “buildup reversal” phenomenon occurs to be more precisely identified. The effect of mesh spacing and quadrature resolution on fluence through the shields is also considered.