ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DNFSB’s Summers ends board tenure, extending agency’s loss of quorum
Lee
Summers
The Defense Nuclear Facilities Safety Board, the independent agency responsible for ensuring that Department of Energy facilities are protective of public health and safety, announced that the board’s acting chairman, Thomas Summers, has concluded his service with the agency, having completed his second term as a board member on October 18.
Summers’ departure leaves Patricia Lee, who joined the DNFSB after being confirmed by the Senate in July 2024, as the board’s only remaining member and acting chair. Lee’s DNFSB board term ends in October 2027.
Hyung Jin Shim, Chang Hyo Kim
Nuclear Science and Engineering | Volume 177 | Number 2 | June 2014 | Pages 184-192
Technical Paper | doi.org/10.13182/NSE13-29
Articles are hosted by Taylor and Francis Online.
It is very time-consuming to obtain a high-precision Monte Carlo (MC) estimate of the fuel temperature reactivity coefficient (FTC) through direct subtraction of two reactivity values from MC calculations at two different fuel temperatures. As an alternative to the direct subtraction MC estimate of the FTC, this paper presents a new method based on the adjoint-weighted correlated sampling technique. The new method translates the change in fuel temperature as the corresponding changes in both the microscopic cross sections and the transfer probabilities in scattering kernels described by the free gas model. The effectiveness of the new method is examined through continuous-energy MC neutronics calculations for pressurized water reactor pin cell and CANDU pressurized heavy water reactor lattice problems. The isotope-wise and reaction-type–wise contributions to the FTCs in the two problems are examined for two free gas models: the constant-cross-section and the resonance-cross-section models. It is demonstrated that the new MC method can predict the reactivity change due to fuel temperature variation as accurately as the conventional, more time-consuming direct subtraction MC method.