ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
C. Dubi, I. Israelashvili, T. Ridnik
Nuclear Science and Engineering | Volume 176 | Number 3 | March 2014 | Pages 350-359
Technical Paper | doi.org/10.13182/NSE13-2
Articles are hosted by Taylor and Francis Online.
Neutron multiplicity counting (NMC) measurements are often affected by the detection system dead time. Still, dead time losses are often neglected in analytic NMC models, and most of the dead time corrections are done through empirical models, experimentally fitted to the measurement system. In the present paper, we introduce a new analytic model for calculating the effect of a system dead time on the outcome of NMC. The model is subjected to two assumptions (in addition to the standard model assumptions in multiplicity counting): The first is that the dead time can be described by a paralyzable model, and the second is that the dead time effect may occur only between neutrons arriving from the same source event. The second assumption is, in fact, a restriction on the source event rate in the system and, in certain cases, may eventually be translated into a restriction on the mass of the measured sample.