ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Joint NEA project performs high-burnup test
An article in the OECD Nuclear Energy Agency’s July news bulletin noted that a first test has been completed for the High Burnup Experiments in Reactivity Initiated Accident (HERA) project. The project aim is to understand the performance of light water reactor fuel at high burnup under reactivity-initiated accidents (RIA).
Alain Hébert, Hadrien Leroyer
Nuclear Science and Engineering | Volume 176 | Number 3 | March 2014 | Pages 312-324
Technical Paper | doi.org/10.13182/NSE13-26
Articles are hosted by Taylor and Francis Online.
We investigate the OPTEX reflector model for obtaining few-group reflector parameters consistent with a reference power distribution in the core. The reference power distribution is obtained using a 142 872-region calculation defined over a two-dimensional eighth-of-core pressurized water reactor (PWR) and performed with the method of characteristics. The OPTEX method is based on generalized perturbation theory and uses an optimization algorithm known as parametric linear complementarity pivoting. The proposed model leads to few-group diffusion coefficients or P1-weighted macroscopic total cross sections that can be used to represent the reflector in full-core calculations. These few-group parameters can be spatially heterogeneous in order to correctly represent steel baffles and thermal shields present in modern PWRs. The optimal reflector parameters are compared with those obtained with a flux-volume weighting of the reflector cross sections recovered from the reference calculation. Important improvements in full-core power distribution are observed when the optimal parameters are used.