ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Dry Ice Blasting: A Game-Changer for Safe Cleaning and Decontamination in Nuclear Power Plants
The nuclear energy industry is critical not only for meeting the world’s growing demand for electricity but also for advancing global decarbonization goals. As the sector evolves—through life extensions of existing plants, decommissioning, innovations like small modular reactors (SMRs) and microreactors, and new facility construction—the need for safe, efficient, and environmentally responsible maintenance and decommissioning continues to grow. Whether a plant is coming online, operating beyond its original design life, or entering decommissioning, cleanliness and operational integrity remain non-negotiable. That’s where dry ice blasting stands out—a powerful, safe cleaning method ideally suited for the high-stakes demands of nuclear environments.
Mayank Goswami, Anupam Saxena, Prabhat Munshi
Nuclear Science and Engineering | Volume 176 | Number 2 | February 2014 | Pages 240-253
Technical Paper | doi.org/10.13182/NSE12-26
Articles are hosted by Taylor and Francis Online.
Iterative algorithms for computerized tomography reconstruction employ a variety of grids, interpolation techniques, and solution procedures. A new projection-intersection (PI) grid is presented in this work. It comprises all the intersection points between the projection rays passing through the object. A few advantages include (a) a user-independent discretization process and (b) a reduction in reconstruction error caused by nonparticipating nodes. Computerized tomography reconstruction results by PI are compared with existing conventional grids. The multiplicative algebraic reconstruction technique (MART) and entropy maximization are used as solution techniques. We note that for simulated data, the PI grid gives better results when compared with the square-pixel grid. Two different sets of experimental data (obtained previously for a mercury-nitrogen flow loop and one with a known specimen with a static known profile) are processed with the above-mentioned options. A basic theoretical model (but experimentally correlated) is also used to verify the void reference level. Computerized tomography results for experimental projection data indicate a trend similar to the previous MART results, but a major difference is visible in the void-fraction distributions. This fact is important, as heat transfer coefficients are strongly dependent on the distribution of voids.