ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
A. Hébert
Nuclear Science and Engineering | Volume 160 | Number 2 | October 2008 | Pages 261-266
Technical Note | doi.org/10.13182/NSE160-261TN
Articles are hosted by Taylor and Francis Online.
The double-heterogeneity treatment is available in many lattice codes to represent the effect of one or many stochastic media on the deterministic solution of the neutron transport equation. A stochastic medium is a mixture of a diluent matrix with cylindrical or spherical microstructures of different sizes. Different models have been presented in the past, some limited to the collision probability method and others limited to the method of characteristics. We have reformulated these existing models in a uniform framework and introduced a scattering reduction, making them compatible with any solution technique of the neutron transport equation. This new approach has been implemented in the Dragon Version4 lattice code in a generic way that is interoperable with the overall code features. This approach can easily be implemented within any existing code dedicated to the solution of the transport equation.