ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. Le Tellier, A. Hébert, A. Santamarina, O. Litaize
Nuclear Science and Engineering | Volume 158 | Number 3 | March 2008 | Pages 231-243
Technical Paper | doi.org/10.13182/NSE08-A2750
Articles are hosted by Taylor and Francis Online.
Calculations based on the characteristics method and different self-shielding models are presented for 9 × 9 boiling water reactor (BWR) assemblies fully loaded with mixed-oxide (MOX) fuel. The geometry of these assemblies was recovered from the BASALA experimental program. We have focused our study on three configurations simulating the different voiding conditions that an assembly can undergo in a BWR pressure vessel. A parametric study was carried out with respect to the spatial discretization, the tracking parameters, and the anisotropy order. Comparisons with Monte Carlo calculations in terms of keff, radiative capture, and fission rates were performed to validate the computational tools. The results are in good agreement between the stochastic and deterministic approaches. The mutual self-shielding model recently introduced within the framework of the Ribon extending self-shielding method appears to be useful for this type of assemblies. Indeed, in the calculation of these MOX benchmarks, the overlapping of resonances, especially between 238U and 240Pu, plays an important role due to the spectral strengthening of the flux as the voiding percentage is increased. The method of characteristics is shown to be adequate to perform accurate calculations handling a fine spatial discretization.