ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
NRC grants Clinton and Dresden license renewals
Three commercial power reactors across two Illinois nuclear power plants—Constellation’s Clinton and Dresden—have had their licenses renewed for 20 more years by the Nuclear Regulatory Commission.
Young Ryong Park, Nam Zin Cho
Nuclear Science and Engineering | Volume 158 | Number 2 | February 2008 | Pages 154-163
Technical Paper | doi.org/10.13182/NSE06-23
Articles are hosted by Taylor and Francis Online.
As the nuclear reactor core becomes more complex, heterogeneous, and geometrically irregular, the method of characteristics (MOC) is gaining popularity in neutron transport calculations. However, the long computing times require good acceleration methods. In this paper, the concept of coarse-mesh angular dependent rebalance (CMADR) acceleration is described and applied to the MOC calculation in x-y geometry. The method is based on the angular-dependent rebalance factors defined on coarse-mesh cell boundaries. A coarse-mesh cell may consist of several fine-mesh cells that can be heterogeneous and of mixed geometries with irregular or unstructured mesh shapes. The CMADR acceleration is tested on several test problems, including problems with strong material heterogeneity, and the results show that CMADR is very effective in reducing the number of iterations and the computing times of MOC calculations.