ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Douglas W. Stamps
Nuclear Science and Engineering | Volume 157 | Number 3 | November 2007 | Pages 331-343
Technical Paper | doi.org/10.13182/NSE07-A2731
Articles are hosted by Taylor and Francis Online.
A general analytical model was developed to predict the thermal-hydraulic behavior in box-type catalytic recombiners of different sizes and configurations. The fluid mechanics of the recombiner was modeled as flow through a chimney, which resulted in a modified form of the classic chimney equation to predict the exit gas velocity and flow rate. The thermal behavior of the recombiner was modeled using the transient form of the energy equation for reacting flow. The model was assessed using data from recombiners developed by the NIS Ingenieurgesellschaft Company (NIS), Siemans, and Atomic Energy of Canada Limited. Good agreement was obtained between the model and experimental data for the time-dependent hydrogen concentration in the test facility and the capacity of the recombiner in terms of the hydrogen recombination rate, both key parameters in the analyses of accidents in nuclear power plants. The analytical model could be reduced to the form of an empirical correlation developed for the NIS recombiner under simplifying conditions.