ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into a recurring annual issue—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate the up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft misunderstood technology.
Taro Ueki
Nuclear Science and Engineering | Volume 157 | Number 2 | October 2007 | Pages 119-131
Technical Paper | doi.org/10.13182/NSE07-A2717
Articles are hosted by Taylor and Francis Online.
A variance reduction method has been developed for the Monte Carlo calculation of electron emission energy profile induced by photon radiation. The spatial control of particle weight was exclusively investigated. It was derived that the photon weight in the electron range at an electron detection surface should be equal to the electron weight that is determined to be inversely proportional to the electron adjoint function. Therefore, the preliminary Monte Carlo calculation of the forward electron-only problem with the uniform electron source over the maximum electron range, maximum allowed energy, and all solid angles was conducted to create the photon and electron weight window. The photon weight window more than the maximum electron range away from the electron detection surface was made constant. Monte Carlo simulations of photon and electron coupled-transport were conducted for slab materials with photons normally incident on one side and the electron energy profile to be evaluated on the other side. Numerical results show that efficiency gain with respect to the simulation with no weight control is significant for slabs of typical low and high atomic number materials even if taking into account time spent on the preliminary Monte Carlo calculation of the electron adjoint function.