ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
The progress so far: An update on the Reactor Pilot Program
It has been about three months since the Department of Energy named 10 companies for its new Reactor Pilot Program, which maps out how the DOE would meet the goal announced by executive order in May of having three reactors achieve criticality by July 4, 2026.
Brian R. Nease, Taro Ueki
Nuclear Science and Engineering | Volume 157 | Number 1 | September 2007 | Pages 51-64
Technical Paper | doi.org/10.13182/NSE07-A2712
Articles are hosted by Taylor and Francis Online.
A coarse-mesh projection method has been developed for the Monte Carlo calculation of dominant eigenvalue ratio [dominance ratio (DR)]. The first step of the method consists of the regression analysis of the multivariate time series from the coarse-mesh binning of the Monte Carlo fission source distribution. The second step is computation of the eigenvectors of the adjoint matrix of noise propagation. In general, projections on these eigenvectors can be utilized to compute important characteristics of the eigenmodes of fission source distribution. In this work, it has been proven that if the eigenvector corresponding to the largest eigenvalue of the aforementioned adjoint matrix is taken to be the vector for projection, the projected scalar time series follows the autoregressive process of order one with the root of characteristic polynomial, i.e., the autocorrelation coefficient, being the DR of fission source distribution. Numerical results are presented for four problems including one-energy-group checkerboard-type problems, a one-energy-group cube problem and a continuous-energy pressurized water reactor core problem. The strength of the method is twofold; (a) the elimination of the use of autoregressive moving average fitting, and (b) no need to optimize the order of fitting.