ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Guohui Zhang, Rongtai Cao, Jinxiang Chen, Guoyou Tang, Yu. M. Gledenov, M. Sedysheva, G. Khuukhenkhuu
Nuclear Science and Engineering | Volume 156 | Number 1 | May 2007 | Pages 115-119
Technical Paper | doi.org/10.13182/NSE07-A2690
Articles are hosted by Taylor and Francis Online.
Differential cross sections of the 64Zn(n,)61Ni reaction were measured at neutron energies of 5.03 and 5.95 MeV by using a gridded ionization chamber. The experiment was performed at the 4.5-MV Van de Graaff accelerator of the Institute of Heavy Ion Physics, Peking University. Neutrons were produced through the D(d,n)3He reaction with a deuterium gas target. The absolute neutron flux was determined by the 238U(n,f) reaction and a calibrated BF3 long counter. Present results are compared with existing data.