ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
F.-J. Hambsch, I. Ruskov
Nuclear Science and Engineering | Volume 156 | Number 1 | May 2007 | Pages 103-114
Technical Paper | doi.org/10.13182/NSE07-A2689
Articles are hosted by Taylor and Francis Online.
The 10B(n,0)/10B(n,1) branching ratio has been measured at the Geel linear accelerator based time-of-flight spectrometer in the incident neutron energy range from 0.1 keV up to 2 MeV. A twin Frisch-grid ionization chamber has been used with two very thin 10B samples mounted back-to-back on the common cathode. This type of ionization chamber made it possible to measure both the energy and the angular distribution of the emitted reaction products (alpha particles and 7Li nuclei) with a clear separation of both reaction channels: emission to the ground state (0) and first excited state (1). The branching ratio 10B(n,0)/10B(n,1) was found to be in good agreement with the ENDF/B-VI evaluation up to ~1 MeV incident neutron energy. At higher energies (>1 MeV), a clear deviation is observed. The present branching ratio data have been entered into the ongoing International Atomic Energy Agency Coordinated Research Project on "Improvement of the Standard Cross Sections for Light Elements." A preliminary R-matrix calculation reproduces the measured branching ratio in the whole energy range up to ~2 MeV.