ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
David P. Weber, Tanju Sofu, Won Sik Yang, Thomas J. Downar, Justin W. Thomas, Zhaopeng Zhong, Jin Young Cho, Kang Seog Kim, Tae Hyun Chun, Han Gyu Joo, Chang Hyo Kim
Nuclear Science and Engineering | Volume 155 | Number 3 | March 2007 | Pages 395-408
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2672
Articles are hosted by Taylor and Francis Online.
The Numerical Nuclear Reactor (NNR) was developed to provide a high-fidelity tool for light water reactor analysis based on first-principles models. High fidelity is accomplished by integrating full physics, highly refined solution modules for the coupled neutronic and thermal-hydraulic phenomena. Each solution module employs methods and models that are formulated faithfully to the first principles governing the physics, real geometry, and constituents. Specifically, the critical analysis elements that are incorporated in the coupled code capability are a direct whole-core neutron transport solution and an ultra-fine-mesh computational fluid dynamics / heat transfer solution, each obtained with explicit (sub-fuel-pin-cell level) heterogeneous representations of the components of the core. The considerable computational resources required for such highly refined modeling are addressed by using massively parallel computers, which together with the coupled codes constitute the NNR. To establish confidence in the NNR methodology, verification and validation of the solution modules have been performed and are continuing for both the neutronic module and the thermal-hydraulic module for single-phase and two-phase boiling conditions under prototypical pressurized water reactor and boiling water reactor conditions. This paper describes the features of the NNR and validation of each module and provides the results of several coupled code calculations.