ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Clifton R. Drumm, Wesley C. Fan, Leonard Lorence, Jennifer Liscum-Powell
Nuclear Science and Engineering | Volume 155 | Number 3 | March 2007 | Pages 355-366
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2668
Articles are hosted by Taylor and Francis Online.
Charged-particle transport is characterized by scattering cross sections that are extremely large and forward-peaked, requiring specialized treatment as compared with neutral-particle transport. The extended-transport correction (ETC) is known to be an effective method to treat elastic scattering of electrons. We apply the ETC to inelastic downscattering of electrons, and evaluate the effectiveness of the method by comparing the scattering moments for the screened Rutherford scattering kernel and for scattering with a deterministic cosine. The ETC approximation results in a -function in angle downscatter source term, for energy loss without direction change, which has been incorporated into the CEPTRE discrete ordinates code in a manner that is compatible with general quadrature sets, not requiring a specialized Galerkin quadrature. The ETC approximation also makes it possible to develop a first-collision source technique that is effective for charged-particle transport, by including particles that have downscattered in energy without direction change in the uncollided-flux solution. We demonstrate the effectiveness of these techniques for problems involving electron beam sources incident on infinite and finite water cylinders and compare the energy- and charge-deposition distributions with ITS Monte Carlo results with good agreement.