ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 155 | Number 2 | February 2007 | Pages 321-329
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2666
Articles are hosted by Taylor and Francis Online.
Standard variational estimates for perturbations in inhomogeneous transport problems were applied to internal-interface perturbations in coupled neutron-photon problems. Absolute gamma-ray line leakages and ratios of line leakages were the quantities of interest. Gamma-ray spectroscopy using the deterministic multigroup discrete-ordinates code PARTISN was accomplished with a 130-group neutron library and a 120-group photon library with narrow bins centered around gamma lines of interest. Perturbed integrals were evaluated using a volume and a surface formulation, and issues involving negative fluxes (required in the adjoint calculation for line ratios) were addressed. Numerical test problems used a 252Cf source surrounded by a material containing nitrogen and hydrogen; the thickness of this material was perturbed ±86%. The ratios of the 1.8848-, 2.2246-, and 5.2692-MeV thermal neutron capture lines were very well estimated using the variational estimates, even for macroscopic-size perturbations of internal interface locations; the volume-integral formulation for the perturbed integrals was generally more accurate than the surface-integral formulation for estimating ratios. For estimating absolute leakages, the Roussopolos functional in the surface-integral formulation was clearly superior when the gamma-producing shell was thickened, but it produced negative estimates when the shell was thinned.