ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Naoki Sugimura, Akio Yamamoto, Tadashi Ushio, Masaaki Mori, Masato Tabuchi, Tomohiro Endo
Nuclear Science and Engineering | Volume 155 | Number 2 | February 2007 | Pages 276-289
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE155-276
Articles are hosted by Taylor and Francis Online.
A very rigorous and advanced next-generation neutronics design system, AEGIS (Anisotropic, Extended Geometry, Integrated Neutronics Solver), which is based on the deterministic method, is being developed using advanced computer science technology. The method of characteristics, which has the merit of treating heterogeneous geometry explicitly, is utilized in AEGIS as a neutron transport solver. So, the AEGIS code can explicitly model many types of fuel lattices in both commercial light water reactors (LWRs) and advanced reactors such as Generation IV reactors. The AEGIS code can also treat higher-order anisotropic scattering accurately based on spherical harmonics expansion. To compute a large-scale problem, a nonuniform ray-tracing method is implemented in AEGIS. It utilizes the Gauss-Legendre quadrature weight and the macroband method to decide position and width of ray traces to reduce spatial discretization error efficiently. The transport solution of AEGIS has been verified through various benchmark problems. It was found that the AEGIS code can explicitly treat complicated geometry and can efficiently solve a large-scale problem. These results show that flexibility in handling geometry and the very rigorous neutronics calculation models of AEGIS will contribute to predicting neutronics characteristics accurately, not only for commercial LWRs but also for advanced reactors.