ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Pierre Guérin, Anne-Marie Baudron, Jean-Jacques Lautard, Serge Van Criekingen
Nuclear Science and Engineering | Volume 155 | Number 2 | February 2007 | Pages 264-275
Technical Paper | Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications | doi.org/10.13182/NSE07-A2661
Articles are hosted by Taylor and Francis Online.
This paper describes a new technique for determining the pin power in heterogeneous three-dimensional calculations. It is based on a domain decomposition with overlapping subdomains and a component mode synthesis (CMS) technique for the global flux determination. Local basis functions are used to span a discrete space that allows fundamental global mode approximation through a Galerkin technique. Two approaches are given to obtain these local basis functions. In the first one (the CMS method), the first few spatial eigenfunctions are computed on each subdomain, using periodic boundary conditions. In the second one (factorized CMS method), only the fundamental mode is computed, and we use a factorization principle for the flux in order to replace the higher-order eigenmodes. These different local spatial functions are extended to the global domain by defining them as zero outside the subdomain. These methods are well fitted for heterogeneous core calculations because the spatial interface modes are taken into account in the domain decomposition. Although these methods could be applied to higher-order angular approximations - particularly easily to an SPN approximation - the numerical results we provide are obtained using a diffusion model. We show the methods' accuracy for reactor cores loaded with uranium dioxide and mixed oxide assemblies, for which standard reconstruction techniques are known to perform poorly. Furthermore, we show that our methods are highly and easily parallelizable.