ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
University of Nebraska–Lincoln: Home of ANS’s newest student section
Following official confirmation in June at the American Nuclear Society’s 2025 Annual Conference, the University of Nebraska–Lincoln has kicked off its first year as the newest ANS student section.
Martina Kloos, Jörg Peschke
Nuclear Science and Engineering | Volume 153 | Number 2 | June 2006 | Pages 137-156
Technical Paper | doi.org/10.13182/NSE06-A2601
Articles are hosted by Taylor and Francis Online.
The MCDET method for probabilistic dynamics is a combination of Monte Carlo (MC) simulation and the Discrete Dynamic Event Tree (DDET) approach. The implementation of MCDET works in tandem with any appropriate deterministic dynamics code.MCDET was developed to achieve a more realistic modeling and analysis of complex system dynamics in the framework of probabilistic safety analyses. It is capable of accounting for aleatory (stochastic) uncertainties, which are the reason why the safety assessment is probabilistic, and for epistemic (state-of-knowledge) uncertainties, which determine the precision of the probabilistic assessment. In MCDET, discrete aleatory variables are generally treated by the DDET approach, whereas continuous aleatory variables are handled by MC simulation. For each set of values provided by the MC simulation, MCDET generates a new DDET.The paper gives a description of the MCDET method and an overview of the results that may be obtained from its application. The results presented were derived from an application of MCDET in combination with the deterministic dynamics code MELCOR for integrated severe accident simulation. For illustration purposes, the consequences in a German nuclear power plant after a station blackout were analyzed.