ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Marzio Marseguerra, Enrico Zio, Raffaele Canetta
Nuclear Science and Engineering | Volume 153 | Number 2 | June 2006 | Pages 124-136
Technical Paper | doi.org/10.13182/NSE06-A2600
Articles are hosted by Taylor and Francis Online.
For realistic systems, a dynamic approach to reliability analysis is likely to require a significant increase in the computational efforts, due to the need of integrating the dynamic evolution with its characteristic times. Thus, it becomes mandatory to resort to validated, simplified models of process evolution. Such models are typically based on lumped effective parameters whose values need to be suitably estimated so as to best fit to the available plant data.In this paper we propose a multiobjective genetic algorithm approach for the estimation of the effective parameters of a simplified model of nuclear reactor dynamics. The calibration of the effective parameters is achieved by best fitting the model responses of the quantities of interest to the actual evolution profiles. A case study is reported in which the real reactor is simulated by the QUAndry-based Reactor Kinetics (QUARK) code available from the Nuclear Energy Agency, and the simplified model is based on the point-kinetics approximation to describe the neutron balance in the core and on thermal equilibrium relations to describe the energy exchange between the different loops. The (pseudo)measured quantities of interest are the reactor power and the average fuel temperature.