ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Xiaolong Huang
Nuclear Science and Engineering | Volume 152 | Number 3 | March 2006 | Pages 325-333
Technical Note | doi.org/10.13182/NSE06-A2587
Articles are hosted by Taylor and Francis Online.
Based on the experimental data of total, nonelastic, elastic cross sections and elastic-scattering angular distributions for n + 58Ni reactions, a set of neutron optical model potential parameters is obtained in the region of incident neutron energy from 0.8 to 150 MeV. Then the reaction cross sections, angular distributions, energy spectra, gamma-ray production cross sections, and gamma-ray production energy spectra are calculated and evaluated by optical model, distorted wave Born approximation theory, Hauser-Feshbach theory, exciton model, and cascade mechanism inside nuclear. The results are compared with existing experimental data and other evaluated data from ENDF/B-VI and in agreement with each other within the uncertainties of these evaluations and measurements. Finally, the covariances for the important neutron cross sections are estimated using the SPC code based on the available experimental data.