ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Paul Wilson, Phiphat Phruksarojanakun
Nuclear Science and Engineering | Volume 152 | Number 3 | March 2006 | Pages 243-255
Technical Paper | doi.org/10.13182/NSE06-A2579
Articles are hosted by Taylor and Francis Online.
A new Monte Carlo (MC) method for calculating the isotopic inventory of material subjected to a neutron flux is developed and demonstrated. The method is particularly suited to modeling materials that flow through a system in a nondeterministic path. The method has strong analogies to MC neutral particle transport. The analog methodology is fully developed, including considerations for simple, complex, and loop flows, and enabling concepts such as sources and tallies. A wide variety of test problems is employed to demonstrate the validity of the analog method under various flow conditions. The method reproduced the results of the as-low-as-reasonably-achievable deterministic inventory code for comparable problems and is self-consistent when comparing complex flow scenarios to mathematically identical simple flow scenarios. A demonstration of highly scalable parallelization does not eliminate the need to develop variance reduction techniques.