ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Jean-Marc Depinay, Michel Caillaud, Remi Sentis
Nuclear Science and Engineering | Volume 152 | Number 1 | January 2006 | Pages 48-55
Technical Paper | doi.org/10.13182/NSE06-A2562
Articles are hosted by Taylor and Francis Online.
Application of the Monte Carlo method to deep-penetration transport problems often requires a biasing technique based on the use of an importance function. Here, in the framework of a multigroup model, we use an importance function in the form Ig([arrow over]x, [arrow over]) = eKg[arrow over].[arrow over]x[varphi]g([arrow over]), where g is the energy group index that ranges from 1 to G and [arrow over] is a vector usually fixed empirically. We describe an algorithm to find a good set of coefficients Kg and a good set of functions [varphi]g. To do this, we solve a system derived from the homogenous adjoint equations. We give two numerical examples where we show how these importance functions can enhance the accuracy of the computation.