ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
NRC grants Clinton and Dresden license renewals
Three commercial power reactors across two Illinois nuclear power plants—Constellation’s Clinton and Dresden—have had their licenses renewed for 20 more years by the Nuclear Regulatory Commission.
Y.-J. Huang, H. Paul Wang, Chih C. Chao, H. H. Liu, M. C. Hsiao, S. H. Liu
Nuclear Science and Engineering | Volume 151 | Number 3 | November 2005 | Pages 355-360
Technical Note | doi.org/10.13182/NSE05-A2555
Articles are hosted by Taylor and Francis Online.
Experimentally, two-stage oxidation of spent low-level radioactive resin was found by thermo- gravimetric analysis (TGA). About 24% of the spent resins was oxidized at 600 to 900 K. Online Fourier transform infrared spectra showed that the decomposition of the -SO3H species in the resin to SO2 occurred at 670 and 1020 K. The numerical calculation from TGA weight loss data at different heating rates showed that the global activation energies for oxidation of the spent resins were 108 to 138 kJmol-1. The reaction orders for resin and oxygen were about 1.0 and 3.5, respectively. The global rate equations for oxidation of the resin in the first and second stages can be expressed as dx1/dt (s-1) = 2.3 × 107 (s-1)exp[-117 900(Jmol-1)/T(K)][1 - x (%)]0.82 [O2 (vt%)]3.5 (x denotes the reaction conversion) and dx2/dt = 8.4 × 1017 exp(-239 500/RT) (1 - x)0.9[O2]4.5, respectively.