ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
A. dos Santos, G. S. de Andrade e Silva, A. G. Mendonça, R. Fuga, A. Y. Abe
Nuclear Science and Engineering | Volume 151 | Number 2 | October 2005 | Pages 237-250
Technical Paper | doi.org/10.13182/NSE05-A2543
Articles are hosted by Taylor and Francis Online.
TORT, an SN three-dimensional transport code, is employed for the analysis of the inversion point of the isothermal reactivity coefficient of the IPEN/MB-01 reactor. The analyses are performed in companion NJOY, AMPX-II, and TORT systems considering the data libraries ENDF/B-VI.8, JENDL3.3, and JEF3.0. The analyses reveal that for this peculiar problem, there is a need to convert all the computer codes to DOUBLE-PRECISION as well as to increase to seven the number of digits of the ANISN library generated by XSDRNPM. Contrary to the traditional diffusion theory codes, TORT keff results are very sensitive to the number of both fine and broad groups. For instance, the traditional and very well known two- and four-group structure, largely utilized in several diffusion codes, produced simply unacceptable keff results. The highest deviation between calculated and experimental values found for the inversion point was -4.48°C. At first glance, there appears to be a significant discrepancy. However, in terms of reactivity coefficient, this discrepancy means a deviation of -0.90 ± 0.05 pcm/°C, which indicates that the calculational methodology and related nuclear data libraries meet the desired accuracy (-1.0 pcm/°C) for the determination of this parameter for thermal reactors.