ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
Ku Young Chung, Chang Hyo Kim
Nuclear Science and Engineering | Volume 151 | Number 2 | October 2005 | Pages 212-223
Technical Paper | doi.org/10.13182/NSE05-A2541
Articles are hosted by Taylor and Francis Online.
As an efficiency enhancement numerical scheme of transient nonlinear nodal calculations, a three-grid correction scheme (3GCS) using a modified W cycle based on three grid structures of three-dimensional (3-D) four-node-per-assembly (4N/A), 3-D 1N/A, and two-dimensional (2-D) 1N/A is developed. Its computational efficiency is compared with a single-grid biconjugate gradient stabilized (BICGSTAB) iteration scheme in popular use in terms of 3-D 4N/A nonlinear analytical nodal method solutions to Nuclear Energy Agency Committee on Reactor Physics pressurized water reactor rod ejection benchmark problems. It is shown that in computational efficiency, the 3GCS excels the BICGSTAB iteration method using preconditioners such as Jacobi, incomplete lower and upper (ILU), and 3-D block incomplete lower and upper (BILU3D) preconditioners. It is also shown that coarse-grid residual equations based on the 3-D 1N/A grid structure can predict temporal truncation errors as accurately as the 3-D 4N/A fine-grid residual equation but with considerably less overhead computing time for variable time-step size control calculations by a step doubling method. In addition, incorporation of preconditioners into the 3GCS is shown to enhance further efficiency of the nonpreconditioned 3GCS. From these results, it is concluded that the temporal adaptive 3GCS employing coarse-grid residual equations for temporal step-size control as well as the preconditioner like the BILU3D can provide a very efficient iterative solution scheme for transient nonlinear nodal calculations.