ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Alain Hébert
Nuclear Science and Engineering | Volume 151 | Number 1 | September 2005 | Pages 1-24
Technical Paper | doi.org/10.13182/NSE151-1-24
Articles are hosted by Taylor and Francis Online.
Improvement of the lattice code component related to resonance self-shielding calculations is described. The proposed self-shielding model is based on a subgroup flux equation with probability tables, as implemented in the CALENDF approach of P. Ribon. A new type of correlated two-dimensional probability table is introduced for the representation of the slowing-down effect in the resolved energy domain. The resulting formalism makes possible a better representation of distributed self-shielding effects.A new numerical scheme is also proposed to represent the mutual shielding effect of overlapping resonances between different isotopes in the context of the Ribon subgroup equations. The interference effects between two resonant isotopes are represented by a correlated weight matrix also computed using a CALENDF approach. The model was designed with the primary goal of allowing the straightforward replacement of legacy self-shielding components in typical lattice codes to gain improved accuracy without any noticeable increase in CPU resources.Finally, a validation is presented where the absorption rates are compared with exact values obtained using a fine-group elastic slowing-down calculation in the resolved energy domain. Other results, relative to Rowland's pin-cell benchmarks, are also presented. The need to represent mutual shielding effects, at least for mixed-oxide fuel is demonstrated.