ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
T. Yoshida, A. Y. K. Chen, J. Nozawa, Naohiro Sugie, T. Tanabe
Nuclear Science and Engineering | Volume 150 | Number 3 | July 2005 | Pages 362-367
Technical Note | doi.org/10.13182/NSE05-A2523
Articles are hosted by Taylor and Francis Online.
This is a proposal attempting to convert gamma-ray energy into electric energy via differentiated secondary electron generation by gamma rays interacting with two different metal components. The proposed systems consist of two different metal sheets, sandwiching an insulator material, which are arranged in either "roll" or "plate" geometry. Under gamma-ray irradiation, both types of systems produce electric currents that vary with the properties and geometrical structures of the metals. In this preliminary study, the maximum generated electric current and power for the roll system were 0.58 A and 0.093 W, respectively, with 0.01-mm-thick aluminum and 0.1-mm-thick stainless steel sheets.The Monte Carlo N-Particle (MCNP) simulations performed in conjunction with the experimental study have shown that the electric current corresponds to the difference between the two metal components in terms of the number of electrons escaping the metals. The difference can be increased by optimizing the combination of thicknesses, the Z numbers of the two metal components, and the geometrical structures of the system, agreeing with the experimental study. These results strongly suggest that the electric currents in the proposed systems can be predicted on the basis of the simulation. Finally, we propose the application of an electric cell driven by a gamma-ray source and shielded by the electrodes themselves.