ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
T. Yoshida, A. Y. K. Chen, J. Nozawa, Naohiro Sugie, T. Tanabe
Nuclear Science and Engineering | Volume 150 | Number 3 | July 2005 | Pages 362-367
Technical Note | doi.org/10.13182/NSE05-A2523
Articles are hosted by Taylor and Francis Online.
This is a proposal attempting to convert gamma-ray energy into electric energy via differentiated secondary electron generation by gamma rays interacting with two different metal components. The proposed systems consist of two different metal sheets, sandwiching an insulator material, which are arranged in either "roll" or "plate" geometry. Under gamma-ray irradiation, both types of systems produce electric currents that vary with the properties and geometrical structures of the metals. In this preliminary study, the maximum generated electric current and power for the roll system were 0.58 A and 0.093 W, respectively, with 0.01-mm-thick aluminum and 0.1-mm-thick stainless steel sheets.The Monte Carlo N-Particle (MCNP) simulations performed in conjunction with the experimental study have shown that the electric current corresponds to the difference between the two metal components in terms of the number of electrons escaping the metals. The difference can be increased by optimizing the combination of thicknesses, the Z numbers of the two metal components, and the geometrical structures of the system, agreeing with the experimental study. These results strongly suggest that the electric currents in the proposed systems can be predicted on the basis of the simulation. Finally, we propose the application of an electric cell driven by a gamma-ray source and shielded by the electrodes themselves.