ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Remembering ANS member Gil Brown
Brown
The nuclear community is mourning the loss of Gilbert Brown, who passed away on July 11 at the age of 77 following a battle with cancer.
Brown, an American Nuclear Society Fellow and an ANS member for nearly 50 years, joined the faculty at Lowell Technological Institute—now the University of Massachusetts–Lowell—in 1973 and remained there for the rest of his career. He eventually became director of the UMass Lowell nuclear engineering program. After his retirement, he remained an emeritus professor at the university.
Sukesh Aghara, chair of the Nuclear Engineering Department Heads Organization, noted in an email to NEDHO members and others that “Gil was a relentless advocate for nuclear energy and a deeply respected member of our professional community. He was also a kind and generous friend—and one of the reasons I ended up at UMass Lowell. He served the university with great dedication. . . . Within NEDHO, Gil was a steady presence and served for many years as our treasurer. His contributions to nuclear engineering education and to this community will be dearly missed.”
T. Yoshida, A. Y. K. Chen, J. Nozawa, Naohiro Sugie, T. Tanabe
Nuclear Science and Engineering | Volume 150 | Number 3 | July 2005 | Pages 362-367
Technical Note | doi.org/10.13182/NSE05-A2523
Articles are hosted by Taylor and Francis Online.
This is a proposal attempting to convert gamma-ray energy into electric energy via differentiated secondary electron generation by gamma rays interacting with two different metal components. The proposed systems consist of two different metal sheets, sandwiching an insulator material, which are arranged in either "roll" or "plate" geometry. Under gamma-ray irradiation, both types of systems produce electric currents that vary with the properties and geometrical structures of the metals. In this preliminary study, the maximum generated electric current and power for the roll system were 0.58 A and 0.093 W, respectively, with 0.01-mm-thick aluminum and 0.1-mm-thick stainless steel sheets.The Monte Carlo N-Particle (MCNP) simulations performed in conjunction with the experimental study have shown that the electric current corresponds to the difference between the two metal components in terms of the number of electrons escaping the metals. The difference can be increased by optimizing the combination of thicknesses, the Z numbers of the two metal components, and the geometrical structures of the system, agreeing with the experimental study. These results strongly suggest that the electric currents in the proposed systems can be predicted on the basis of the simulation. Finally, we propose the application of an electric cell driven by a gamma-ray source and shielded by the electrodes themselves.